Faculty Profile


  • Ph.D. (Mechanical Engineering, Applied Mechanics Option with Minor in Mathematics), California Institute of Technology, 2005
  • M.S. (Mechanical Engineering), The George Washington University, 2000
  • B.S. (Civil Engineering), Sharif University of Technology, Tehran, Iran, 1997

Professor Yavari joined the School of Civil and Environmental Engineering at the Georgia Institute of Technology in January 2005. He received his B.S. in Civil Engineering from Sharif University of Technology, Tehran, Iran in 1997. He continued his studies at The George Washington University where he obtained an M.S. in Mechanical Engineering in 2000. He then moved to Pasadena, CA and obtained his Ph.D. in Mechanical Engineering (Applied Mechanics option with minor in Mathematics) from the California Institute of Technology in 2005. Professor Yavari is a member of the American Academy of Mechanics.
Professor Yavari's interests are in developing systematic theories of discrete mechanics for crystalline solids with defects. Defects play a crucial role in determining the properties of materials. The development of atomistic methods including density functional theory, bond-order potentials and embedded atom potentials has enabled a detailed study of such defects. However, much of the work is numerical and often with ad hoc boundary/far-field conditions. Specifically, a systematic method for studying these discrete yet non-local problems is lacking. Design in small scales requires solving inverse problems and this is not possible with purely numerical techniques. From a mechanics point of view, defective crystals are modeled as discrete boundary-value problems. The challenging issues are extending the existing techniques from solid state physics for non-periodic systems, new developments in the theory of vector-valued partial difference equations, existence and uniqueness of solutions of discrete boundary-value problems and their symmetries, etc. The other efforts in this direction are understanding the geometric structure of discrete mechanics and its link with similar attempts in the physics and computational mechanics literatures and investigating the rigorous continuum limits of defective crystals.
It has been known in physics for quite some time that the configuration spaces of physical phenomena, in general, are not linear, i.e. Euclidean, and instead they are manifolds (finite or infinite dimensional). Modeling physical theories on manifolds has been pursued for several decades in the theoretical physics literature and ideas from differential geometry have led to many profound advances in physics, the most celebrated one being Einstein's general theory of relativity. In engineering, and in particular in mechanics, manifold theory has not been appreciated perhaps mainly because engineering scientists have been involved in solving many specific technological problems in the last few decades and this has forced them to work with the simplest possible mathematical models.  This need of working with simple models formulated in Euclidean spaces has resulted in a disconnect between different methods and a lack of deep understanding of the connections between different numerical methods, structure of governing equations of discrete and continuous systems, etc.  One of Dr. Yavari's interests is to use ideas and techniques from differential geometry, exterior calculus, and algebraic topology in several problems in continuum and discrete mechanics in order to advance the understanding of different aspects of mechanics of continuous and discrete systems and their connections, differences and similarities.


  • Geometric continuum mechanics
  • Nonlinear mechanics of defects
  • Nonlinear elasticity
  • Ferroelectrics
  • Fracture mechanics
  • Fractals


  • US Junior Oberwolfach Fellow, 2013
  • OCCAM Visiting Fellow, Mathematical Institute, University of Oxford, Summer 2013
  • Mathematics and Mechanics of Solids, Editorial Board Member 2011
  • OCCAM Visiting Fellow, Mathematical Institute, University of Oxford, Summer 2011
  • Engineering Fracture Mechanics Top 10 Most Cited Articles, 2005 to 2009.
  • AFOSR Young Investigator Program Award, 2010
  • OCCAM Visiting Fellow, Mathematical Institute, University of Oxford, Summer 2010
  • Excellence in Research Award, Georgia Institute of Technology, 2010
  • ScienceDirect Top25 Hottest Articles (see publications)
  • Bill Schultz Junior Faculty Teaching Award, Georgia Institute of Technology, 2007


  • A. Yavari and A. Goriely, The twist-fit problem: Finite torsional and shear eigenstrains in nonlinear elastic solids, Proceedings of the Royal Society A 471: 20150596.
  • A. Angoshtari and A. Yavari, The weak compatibility equations of nonlinear elasticity and the insufficiency of the Hadamard jump condition for non-simply connected bodies, Continuum Mechanics and Thermodynamics, DOI: 10.1007/s00161-015-0478-6.
  • S. Sadik and A. Yavari, On the origins of the idea of the multiplicative decomposition of the deformation gradient, Mathematics and Mechanics of Solids, DOI:10.1177/1081286515612280.
  • S. Sadik and A. Yavari, Geometric nonlinear thermoelasticity and the time evolution of thermal stresses, Mathematics and Mechanics of Solids, DOI: 10.1177/1081286515599458.
  • A. Angoshtari and A. Yavari, On the compatibility equations of nonlinear and linear elasticity in the presence of boundary conditions, Zeitschrift fur Angewandte Mathematik und Physik (ZAMP), DOI: 10.1007/s00033-015-0575-1.
  • A. Yavari and A. Goriely (2014). Non-Metricity and the Nonlinear Mechanics of Distributed Point Defects. In: R. J. Knops, G.-Q. Chen, and M. Grinfeld (Editors), Differential Geometry and Continuum Mechanics, Springer Proceedings in Mathematics & Statistics (PROMS).
  • Yavari, A. and M.P. Wnuk (2009). Finite Fracture Mechanics for Fractal Cracks. In: F. M. Borodich (Editor) IUTAM Symposium on Scaling in Solid Mechanics, Springer, pp. 223-231.
  • A. Yavari and A. Angoshtari (2013). Atomic Structure of 180^o Ferroelectric Domain Walls in PbTiO_3. In: S. Li and X-L. Gao (Editors), Handbook of Micromechanics and Nanomechanics, Pan Stanford Publishing.
  • A. Yavari, Nonlinear Mechanics of Point Defects and Weyl Geometry. 10th World Congress on Computational Mechanics. July 8-13. Sao Paulo, Brazil.
  • R. Mirzaeifar, R. DesRoches, A. Yavari . K. Gall. Bending analysis of textured polycrystalline shape memory alloy beams. ASME Conference on Smart Materials, Adaptive Structures & Intelligent Systems (SMASIS 2012). September 19-21. Stone Mountain, Georgia, USA.
  • A. Yavari. Riemann-Cartan Geometry of Nonlinear Dislocation Mechanics, 12th Pan American Congress of Applied Mechanics. January 2-6, 2012. Port of Spain, Trinidad.
  • A. Yavari. Discrete Fracture Mechanics of Rough Cracks, 12th Pan American Congress of Applied Mechanics. January 2-6, 2012. Port of Spain, Trinidad.
  • R. Mirzaeifar, R. DesRoches, A. Yavari . K. Gall. A Closed-form Solution for Superelastic Shape Memory Alloy Beams Subjected to Bending. SPIE Smart Structures/NDE (2012). March 11-15. San Diego, California, USA.
  • A. Yavari, The Geometry of Discombinations in Nonlinear Elastic Solids, Material Theories, Mini-Workshop on Scales in Plasticity, Mathematisches Forschungsinstitut Oberwolfach, November 12, 2015.
  • A. Yavari, Differential Complexes in Nonlinear Elasticity, 53rd Meeting of the Society for Natural Philosophy, The University of Calgary, Canada, August 21, 2015.
  • A. Yavari, Differential Complexes in Continuum Mechanics, Fifteenth Pan American Congress of Applied Mechanics, University of Illinois at Urbana-Champaign, May 20, 2015.
  • A. Yavari, Differential Complexes in Continuum Mechanics, 1st Pan-American Congress on Computational Mechanics, Buenos Aires, Argentina, April 28, 2015.
  • A. Yavari, Nonlinear Elastic Inclusions in Nonlinear Isotropic Solids. (Invited Speaker) Symposium in Honor of Professor Kaushik Bhattacharya's 50th Birthday, California Institute of Technology, January 9, 2015.