Structural Engineering, Mechanics, and Materials

Masters’ Degree Reqs

<table>
<thead>
<tr>
<th>Specialization Requirement**</th>
<th>Non-Thesis Option</th>
<th>Thesis Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 Credits</td>
<td>12 Credits</td>
<td></td>
</tr>
<tr>
<td>12 Credits</td>
<td>12 Credits</td>
<td></td>
</tr>
</tbody>
</table>

Total Required Credits: 30 Credits

Ph.D. Degree Reqs

The Ph.D. program includes research and approximately 50 credits beyond the Bachelor’s degree. Doctoral students, in concert with their advisor and thesis committee, construct an individualized program of study tailored to the student’s research interests.

Major elements of the program include:

- Comprehensive exam
- Minor
- Research Proposal
- Thesis
- Oral defense

Research Areas

- Computational Mechanics and Structural Analysis
- Earthquake Engineering and Seismic Hazard Mitigation
- Nano/Microstructure of Cement-based Materials
- Polymeric Composite Materials
- Rehabilitation of Structural Systems
- Shock and Impact Loadings
- Smart Materials and Structures
- Structural Health Monitoring

Facilities

Georgia Tech is equipped with state-of-the-art laboratories and instruments for all aspects of modern structural engineering and structural mechanics and materials research, including an 18,000-square-foot Structural Engineering and Materials Laboratory with an 8,000-square-foot strong floor, an L-shaped reaction wall with capacities of 100 to 300 kips, and two 30-ton-capacity cranes; a broad range of universal testing machines, with capacity to 400 kips; specialized facilities for mechanical testing with infrared thermography and photoelastic stress/strain analysis; a nondestructive evaluation/optics laboratory; a laser scanning confocal microscope; shock loading laboratory with large-scale velocity generator; and numerous high-performance workstations equipped with state-of-the-art software in structural engineering and mechanics.
FACULTY

NELSON C. BAKER, PH.D.
Dean, Professional Education & Associate Professor
Intelligent learning environments for engineering; applications of artificial intelligence and other computer-based techniques to solve engineering problems; robotic applications to civil engineering.

BARRY J. GOODMAN, PH.D. Professor
Earthquake engineering; structural dynamics; matrix structural analysis; hybrid control of structures; influence of nonstructural components on building response; vibrations; finite element analysis; mechanics of materials.

LAURENCE J. JACOBS, PH.D. College of Engineering Associate Dean for Academic Affairs & Professor
Quantitative nondestructive evaluation of civil engineering materials; wave propagation in solids, emphasizing guided waves; nonlinear methods and heterogeneous materials; optical techniques; acoustic sensors for condition monitoring of structural components.

KIMBERLY E. KURTIS, PH.D. Interim School Chair & Professor
Multi-scale structure and performance (i.e., early age through durability) of cement-based materials, cement and admixture chemistry, characterization of cement-based materials, fiber-cement composites, sustainable construction materials, forensics.

RAFI L. MUHANNA, PH.D. Associate Professor
Computational solid and structural mechanics; uncertainty modeling; reliable engineering computing; structural reliability; finite elements.

GLAUCIO H. PAULINO, PH.D.
Raymond Allen Jones Chair & Professor
Computational mechanics, functionally graded materials, experimental methods, constitutive modeling of engineering materials, multiscale phenomena, high-order continuum, fracture and damage mechanics, solution adaptive techniques, inverse problems in mechanics, sensitivity analysis and optimization, and topology design of structures.

DAVID W. SCOTT, PH.D. Associate Professor
Design and use of advanced fiber-reinforced composites in infrastructure applications, structural strengthening and rehabilitation, forensics and nondestructive assessment, design of roadside safety structures.

LAUREN STEWART, PH.D., P.E. Assistant Professor
Full-scale experiments and computational modeling to study the effects of blast, earthquakes and their impacts on structures made of a variety of materials.

PHANISH SURYANARAYANA, PH.D. Associate Professor
Ab-initio methods; multiscale modeling: symmetry in structures; ferroelectricity and ferromagnetism; computational mechanics; high-performance computing; efficient numerical methods for solving problems arising in a variety of fields.

IRIS TIEN, PH.D. Assistant Professor
Probabilistic methods for modeling and reliability assessment of civil infrastructure systems, stochastic processes, risk analysis, structural and infrastructure health monitoring, signal processing and machine learning, and decision making under uncertainty.

YANG WANG, PH.D. Associate Professor
Structural health monitoring, vibration testing, system identification, finite element model updating, feedback structural control, structural dynamics, and earthquake engineering.

DONALD W. WHITE, PH.D. Professor & Group Coordinator
Computational mechanics, numerical methods, structural stability, steel structures, computer-aided engineering of building and bridge structures.

ARASH YAVARI, PH.D. Professor
Solid mechanics in small scales, ferroelectrics, magnetoelastic and electroelastic interactions, lattice theories of solids, geometric continuum mechanics, configurational forces, and fractal fracture mechanics.

ABDUL-HAMID ZUREICK, PH.D. Professor
High-performance fiber-reinforced composite and stainless steel structures, strengthening of building and bridge structures, steel structures, structural stability, structural optimization, bridge structures, anisotropic elasticity.

RESEARCH FACULTY

CHUANG-SHENG (WALTER) YANG, PH.D., P.E. Research Engineer II & Instructor
JIN YEON KIM, PH.D. Senior Research Engineer

ADJUNCT FACULTY

REGINALD DESROCHES, PH.D.
T. RUSSELL GENTRY, PH.D., P.E.
ROBERTO T. LEON, PH.D.

EMERITUS FACULTY

BRUCE R. ELLINGWOOD, PH.D.
LAWRENCE F. KAHN, PH.D.
GERALD WEMPNER, PH.D.
KENNETH M. WILL, PH.D.